Research on deer ecology, management and environmental impacts

Timothy R. Van Deelen, Ph.D.

Department of Wildlife Ecology

University of Wisconsin - Madison

Early population influences

Dahlberg and Guettinger 1956

- Native American hunting
- Fur trade
- Logging
- Settlement
- Market hunting

Recent population trend

R. Rolley WI DNR

20th Century population influences

- Increasing regulation
- Ecologically meaningful DMUs
- Variable quotas
- Feeding
- Agriculture
- Forestry
 - Magnitude
 - Pattern
 - Rotation

Impacts to forests

Field experiments and deer impacts: the exclosure

No deer

deer

Deer population histories

Low deer: Lac du Flambeau & Menominee tribal lands (extended hunting), deer-free Apostle Islands

High deer: Rest of landscape

77 sites

shaded = high deer white = low deer

Rooney et al. 2002. For. Ecol. Manage.

Northern white cedar in the Great Lakes region

Van Deelen 1999, Natural Areas Journal

No Hunting Shifts in ferns, graminoids

Relative abundance

<u>1950</u> <u>2000</u>

22% 91%

23% 61%

Brunet Island SP Gogebic SP

Broad Trends-Northern Mesic Forest (62 sites)

Sites are losing native species average site: 18% decline over 50 yrs

~25 species (1950) per 20 sq. m.

~20 species (2000) per 20 sq. m.

Rooney et al. (2004) Conservation Biology 18: 787-798

Rates of change: species richness

Not related to succession

Higher in areas without deer hunting

(-0.59 vs. -0.13)

Ecological impacts

- Reduced abundance and diversity of forbs
- Reduced regeneration and altered composition of woody plants
- Vegetation-mediated effects on insects, birds, small mammals
- Displacement of moose
- Support for wolves

Determinants of deer population size

WSI trend 2002-2003

Winter

Winter

Mild winters are associated with more fawns per doe

Baiting and feeding impacts

Early ('81-'90) vrs Late ('91-'01) Growth Simulations

Forestry impacts

Higher pulpwood harvest is associated with more deer

Change in carrying capacity

Unit Group	A (Northern	Highland)						
Units		Inherently D-I models		D-D w/o Equilibrium		D-D w/ Equilibrium		
Requested	Grouped	Name	%	Name	%	Name	%	Equilibrium
29B	29B, 36,37	Random	0.06	M-M	0	Ricker	0.29	91
		Exponential	0.03	Janochek	0.03	Hassell*	0.09	91
				Von Bert.**	0	Logistic	0.5	84
	Totals		0.09		0.03		0.88	
			Estimated K as a weighted average of equilibrium densitie					

* = Bounded ** = Convergence Problem

Efficiency of hunting

Hunter effort at Sandhill WRA

Data from: Creed, W. A. 2001. The total removal hunt. Pp. 53-66 in J.F. Kubisiak et al. Sandhill whitetails: providing new perspective for deer management. Wisconsin DNR.

Sandhill SY curve and hunter effort

Data from: Creed, W. A. 2001. The total removal hunt. Pp. 53-66 in J.F. Kubisiak et al. Sandhill whitetails: providing new perspective for deer management. Wisconsin DNR.

Conclusion

- Deer populations and forests jointly impact each other
- Management of both may be converging on a situation where:
 - Regeneration of commercially valuable species is impractical
 - Forest biodiversity is lost
 - Deer population are beyond the control of recreational hunting
- Imperatives for:
 - Forest and wildlife managers to cooperate on designing sustainable management
 - Research on the deer-forest-management connection as an integrated system